The role of the mite Orthogalumna terebrantis in the biological control programme for water hyacinth, Eichhornia crassipes, in South Africa

Marlin, Danica (2010) The role of the mite Orthogalumna terebrantis in the biological control programme for water hyacinth, Eichhornia crassipes, in South Africa. PhD thesis, Rhodes University.




Water hyacinth (Eichhornia crassipes) is an aquatic macrophyte originating from the Amazon basin. Due to its beautiful appearance it has been introduced into numerous countries across the world as an ornamental pond plant. It was introduced into South Africa in the early 1900s and has since reached pest proportions in many of the country’s fresh water bodies, causing significant economic and ecological losses. It is now considered to be the worst aquatic weed in South Africa. Efforts to control the spread of the weed began in the early 1970s and there have been some successes. Biological control has been used widely as an alternative to mechanical and chemical controls because it is cost-effective, self-sustaining and environmentally friendly. To date, six biological control agents have been introduced onto water hyacinth in South Africa. However, due to factors such as cold winter temperatures and interference from chemical control, the agent populations are occasionally knocked-down and thus the impact of biological control on the weed population is variable. In addition, many South African water systems are highly eutrophic, and in these systems the plant growth may be accelerated to such an extent that the negative impact of the agents’ herbivory is mitigated. One of the agents established on the weed is the galumnid mite Orthogalumna terebrantis, which originates from Uruguay. In South Africa, the mite was initially discovered on two water hyacinth infestations in the Mpumalanga Province in 1989 and it is now established at 17 sites across the country. Many biological control researchers believe that the mite is a good biological control agent but, prior to this thesis, little quantitative data existed to confirm the belief. Thus, this thesis is a post-release evaluation of O. terebrantis in which various aspects of the mite-plant relationship were investigated to determine the efficacy of the mite and thus better understand the role of the mite in the biological control programme of water hyacinth in South Africa. From laboratory experiments, in which mite densities were lower than densities occurring in the field, it was found that water hyacinth growth is largely unaffected by mite herbivory, except possibly at very high mite densities. When grown in high nutrient conditions the growth of the plant is so great that any affect the mite has is nullified. Plant growth is thus more affected by nutrients than by mite herbivory. However, mite feeding was also influenced by water nutrient levels and mite herbivory was greatest on plants grown in high nutrient conditions. The presence of the mite had a positive effect on the performance of the mirid Eccritotarsus catarinensis, such that the interactions of the two agents together had a greater negative impact on the plant’s growth than the individual agents had alone. Furthermore, water hyacinth physiological parameters, such as the plant’s photosynthetic ability, were negatively impacted by the mite, even at the very low mite densities used in the study. Plant growth rate is dependent on photosynthetic ability i.e. the rate of photosynthesis, and thus a decrease in the plant’s photosynthetic ability will eventually be translated into decreased plant growth rates which would ultimately result in the overall reduction of water hyacinth populations. In addition, temperature tolerance studies showed that the mite was tolerant of low temperatures. The mite already occurs at some of the coldest sites in South Africa. Therefore, the mite should be able to establish at all of the water hyacinth infestations in the country, but because it is a poor disperser it is unlikely to establish at new sites without human intervention. It is suggested that the mite be used as an additional biological control agent at sites where it does not yet occur, specifically at cold sites where some of the other, less cold-tolerant, agents have failed to establish. Finally, conditions of where, how many and how often the mite should be distributed to water hyacinth infestation in South Africa are discussed.

Item Type:Thesis (PhD)
Uncontrolled Keywords:Water hyacinth, Biological control, South Africa, Aquatic weeds, Invasive plants, Mites, Mites as biological pest control agents, Biological pest control agents
Subjects:Q Science > QL Zoology > Invertebrates > Insects
Q Science > QK Botany
Divisions:Faculty > Faculty of Science > Zoology & Entomology
ID Code:2076
Deposited By: Ms Chantel Clack
Deposited On:10 Oct 2011 07:32
Last Modified:06 Jan 2012 16:22
55 full-text download(s) since 10 Oct 2011 07:32
55 full-text download(s) in the past 12 months
More statistics...

Repository Staff Only: item control page