Molecular characterization of the Hsp70/Hsp90 organizing protein (Hop) : phosphorylation, subcellular localization and interaction with Hsp90

Daniel, Sheril (2008) Molecular characterization of the Hsp70/Hsp90 organizing protein (Hop) : phosphorylation, subcellular localization and interaction with Hsp90. PhD thesis, Rhodes University.

[img]
Preview
Text
DANIEL-PHD-TR08-23.pdf

1808Kb

Abstract

Hop (Hsp70-Hsp90 Organizing Protein) is a co-chaperone of two major molecular chaperones, Hsp70 and Hsp90, and acts by transferring substrates from Hsp70 to Hsp90. Although under normal conditions Hop is predominantly localized within the cytosol, Hop has been detected in the nucleus under certain conditions including cell cycle arrest. A putative nuclear localization signal (NLS) has been identified within Hop, which overlaps with the TPR2A domain (previously shown to be critical for Hop-Hsp90 interactions). Hop is phosphorylated in vitro by two cell cycle kinases, namely, casein kinase II (CKII) at S189 and cdc2-kinase at T198; both residues are found upstream of the putative NLS and TPR2A domain. Mimicking phosphorylation at either phosphorylation site appeared to affect the subcellular localization of Hop. The aim of this study was to characterize Hop with respect to its phosphorylation status in vivo, as well as its subcellular localization pattern under heat stress and determine how these properties affected its interaction with Hsp90 as a co-chaperone. Dephosphorylation of proteins under normal and heat shock conditions changed the isoform composition of Hop, providing strong evidence that Hop was phosphorylated in vivo. Surface plasmon resonance (SPR) and glutatione-S-transferase (GST) co-precipitation studies showed that a cdc2-kinase phosphorylated mimic of Hop disrupted Hop-Hsp90 binding. A full length Hop-EGFP construct, as well as substitution mutants of the predicted NLS residues within the Hop-EGFP construct, were transfected into baby hamster kidney (BHK)-21 cells in order to establish the subcellular localization of Hop under heat stress and to test whether predicted residues were critical for nuclear localization of Hop. Under normal conditions, both Hop-EGFP and the NLS mutants were predominantly cytosolic, but when the cells were subjected to heat stress, Hop and its NLS-mutants were localized to both the cytosol and the nucleus. SPR and GST co-precipitation studies showed that substitution of the residues within the major arm of the putative NLS abrogated Hop-Hsp90 interactions. The data obtained from this study, showed for the first time, that Hop was phosphorylated in vivo and suggested that phosphorylation of Hop by cdc2-kinase could inhibit Hop-Hsp90 interactions. Moreover, these results suggested that the subcellular localization of Hop was dependent on stress levels of the cell, particularly heat stress. We propose that the nuclear localization of Hop may be primarily regulated by stress and secondarily by cell cycle arrest. The major arm of the putative NLS did not affect the localization of Hop directly, but was shown to be critical for Hop-Hsp90 binding in vitro. The results of this study suggested that binding of Hop to Hsp90 sequestered Hop within the cytosol and that Hsp90 acted as a cytosolic retention factor for Hop. Both phosphorylation of Hop, and its subcellular localization, appeared to be intimately related to its interaction with Hsp90 as a co-chaperone.

Item Type:Thesis (PhD)
Uncontrolled Keywords:Molecular chaperones, Phosphorylation, Proteins, Heat shock proteins. Surface plasmon resonance, Cytosol
Subjects:Q Science > QD Chemistry > QD241 Organic chemistry > QD415 Biochemistry
Divisions:Faculty > Faculty of Science > Biochemistry, Microbiology & Biotechnology
ID Code:2736
Deposited By: Mrs Carol Perold
Deposited On:30 Apr 2012 08:00
Last Modified:30 Apr 2012 08:00
0 full-text download(s) since 30 Apr 2012 08:00
0 full-text download(s) in the past 12 months
More statistics...

Repository Staff Only: item control page